If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+x-1.01=0
a = 1; b = 1; c = -1.01;
Δ = b2-4ac
Δ = 12-4·1·(-1.01)
Δ = 5.04
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{5.04}}{2*1}=\frac{-1-\sqrt{5.04}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{5.04}}{2*1}=\frac{-1+\sqrt{5.04}}{2} $
| 7x+(5x+2)+(4x+2)=180 | | 2x+43x=180 | | -79=7w=3(4w-1) | | 2x+75-x=180 | | 6x+(3x+3)+(2x+1)=180 | | 129/9=s | | 27x^-36x^2+12x=0 | | 4(x+1)=-32 | | 129÷9=s | | x-31(x-2)=6x-2 | | x-31(x-2)=6-2 | | 8=-8(-10+p) | | 9b+16=70 | | 6n-6=4n* | | x^2+x-1.095=0 | | 3+x1=-3 | | 7+k=49k | | 2n-7=8-3 | | x+13=5x-39 | | p/8-19=-26 | | 7m-3=-3 | | 7+x+18+x16=x+35 | | 50x+5=1.25 | | x+22=4x-35 | | 10y+10=4-4 | | x^2+x-1.07=0 | | 3.6/r=6 | | 6n+1-8=-1 | | 6p-7=73 | | 5-(x+10)=2x-23 | | 1.25(50)+5=x | | 30+6p=(42+7p)-5 |